О нелинейном динамическом анализе зданий и сооружений.

С. Ю. Фиалко

Cracow University of Technology & SCAD Soft IT company

sergiy.fialko@gmail.com

Введение

- Нелинейный анализ с учетом физической нелинейности, основанный на прямом интегрировании уравнений движения, позволяет в ряде случаев существенно приблизить расчетную модель к реальной конструкции при значительных величинах нагрузок, вызывающих неупругую работу элементов конструкций, а также их частичное разрушение.
- Трудности полного нелинейного анализа связаны не только с большим объемом вычислений, что можно в значительной мере преодолеть, используя современную вычислительную технику, новейшие достижения в области вычислительной математики и в методах разработки программного обеспечения, позволяющих создавать высокопроизводительные гетерогенные параллельные вычислительные системы (high performance computing).

- Более серьезную проблему представляет необходимость тонкого понимания работы тех или иных механизмов нелинейности, дающих представление о том, что должно быть включено в расчетную модель, а что для данной задачи можно опустить без особого ущерба для достоверности результатов.
- Отдельную проблему представляет собой анализ и интерпретация полученных результатов.
- Вероятно в силу перечисленных причин в последнее время появились подходы, реализованные в современных программных комплексах, основанные на упрощении расчетной модели. Каждое упрощение расчетной модели должно быть обоснованно. Далеко не все предлагаемые упрощения являются обоснованными и корректными. В первую очередь речь идет об одномодальном приближении, реализованном в нелинейном анализе pushover.

- Nonlinear pushover analysis впервые появился в программном комплексе SAP90 в конце 90-х и был предназначен для паспортизации сооружений в соответствии с системой паспортизации, принятой в США. Задача pushover – оценить серьезность возможных повреждений, которые сооружения получат при землетрясениях различной интенсивности. Рассматривались в основном 3 – 5 этажные каркасные здания прямоугольной формы в плане, для которых первая форма собственных колебаний, близкая к форме колебаний консольной балки, имеет значительный процент модальных масс.
- В руководстве пользователя SAP2000 прямо указывается: In addition, you are not restricted to static pushover analysis: you can also perform full nonlinear time-history analysis.
- К сожалению, это предупреждение во многих отечественных подходах полностью проигнорировано и заменено загадочным для экспертов термином *«инженерная нелинейность»*.

• В связи с этим обращаем внимание на недопустимость необоснованного ограничения исследования одномодальным анализом, хотя бы и нелинейным. Достаточно рассмотреть следующую задачу:

 Здесь N[^] = N_m/N₁₀₀, V[^] = V_m/V₁₀₀, M[^] = M_m/M₁₀₀ – отношение продольной силы, сдвигающей силы в основании и опрокидывающего момента при достигнутой сумме модальных масс к их значениям при 100% суммы модальных масс.

- Поэтому в рамках данного доклада мы будем говорить о полном нелинейном динамическом анализе.
- Мы ограничимся рассмотрением упруго-пластической модели материала в предположении малых перемещений и углов поворота. Таким образом, в предлагаемой постановке задачи используются линейные геометрические соотношения.
- Мы ограничимся рассмотрением тонкостенных конструкций, состоящих из стержневых элементов пространственной рамы и плоских треугольных и четырехугольных оболочечных элементов.

Принцип Остроградского-Гамильтона:

$$\delta_{t_1}^{t_2} (T - \Pi' - W) dt = 0, \quad \Pi' = \Pi + \sum_{i=1}^{imp} \gamma_i (u_i - \overline{u}_i)^2, \tag{1}$$

где T – кинетическая энергия системы, Π – потенциальная, W – изменение потенциала внешних сил, сумма Σ охватывает все степени свободы, по которым заданы вынужденные перемещения $\overline{u}_i(t)$, γ_i – параметры штрафа.

Уравнения движения с учетом сил диссипации:

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + N(\mathbf{u}) + \Gamma \mathbf{u} = \mathbf{f}_{ext}(t) + \Gamma \overline{\mathbf{u}}, \qquad (2)$$

где **М** – матрица масс, **С** – матрица демпфирования, $N(\mathbf{u})$ – вектор восстанавливающих сил (нелинейный оператор), **Г** – диагональная матрица, появившаяся в результате применения параметров штрафа, $\mathbf{f}_{ext}(t)$ – вектор внешних сил, $\overline{\mathbf{u}}(t)$ – заданные вынужденные смещения опор.

Модели демпфирования.

• Рэлеевское демпфирование.

$$\mathbf{C} = \alpha \mathbf{M} + \beta \mathbf{K}_t(\mathbf{u}), \quad \mathbf{K}_t(\mathbf{u}) = \frac{\partial N(\mathbf{u})}{\partial \mathbf{u}}, \quad (3)$$

 $\mathbf{K}_{t}(\mathbf{u})$ – согласованная матрица тангенциальной жесткости.

• Демпфирование материла (многокомпонентное).

$$C = \sum_{e}^{Nele} \gamma_e \mathbf{T}_e^T \mathbf{K}_t^e \mathbf{T}_e, \qquad (4)$$

 γ_e – коэффициент потерь материала, \mathbf{K}^e_t – согласованная матрица тангенциальной жесткости конечного элемента *e*, \mathbf{T}^e_t – матрица преобразования координат.

• Нелинейное демпфирование.

$$\mathbf{M}(\ddot{\mathbf{u}} + \alpha \dot{\mathbf{u}}) + N(\mathbf{u} + \beta \dot{\mathbf{u}}) + \Gamma \mathbf{u} = \mathbf{f}_{ext}(t) + \Gamma \overline{\mathbf{u}}, \qquad (5)$$

• Окончательно получаем задачу Коши:

$$\begin{cases} \mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + N(\mathbf{u}) + \Gamma \mathbf{u} = \mathbf{f}_{ext}(t) + \Gamma \overline{\mathbf{u}}(t) \\ \mathbf{u}(0) = \mathbf{u}_0, \quad \dot{\mathbf{u}}(0) = 0. \end{cases}$$
(6)

Здесь:

- $\mathbf{f}_{ext}(t) = \mathbf{f}_{stat} + \mathbf{f}_{dyn}(t)$, где \mathbf{f}_{stat} статическая нагрузка (постоянная и временная длительная), $\mathbf{f}_{dyn}(t)$ динамическая нагрузка (сейсмическое воздействие.
- **u**₀ перемещения, вызванные статической нагрузкой, определяемые из решения нелинейной задачи статики:

$$N(\mathbf{u}_0) + \Gamma \mathbf{u} = \mathbf{f}_{stat} + \Gamma \overline{\mathbf{u}}$$
⁽⁷⁾

Библиотека конечных элементов

- Четырехугольный плоский оболочечный конечный элемент.
- Треугольный плоский оболочечный конечный элемент.
- Двухузловой стержневой пространственный конечный элемент.

Модели материала

Бетон

- Бетон представляется как однородный и изотропный материал.
- Деформационная теория пластичности, сформулированная в терминах остаточных деформаций (СМ1).
- Диаграмма σ ε: аппроксимация Паде билинейной диаграммы или аппроксимация ЕКБ в сжатой зоне и трехлинейная диаграмма – в растянутой.
- Теория пластического течения при использовании поверхности текучести Друкера Прагера (СМ2) или Гениева (СМ3).
- Учет деградации бетона при раскрытии трещин ниспадающая ветвь (разупрочнение) на диаграмме σ – ε.
- Учет поперечного сдвига: модель Миндлина-Рейсснера для оболочечного элемента и модель Тимошенко для стержневого элемента.

Деформационная теория пластичности

Аппроксимация Паде

Диаграмма ЕКБ

$$) = \begin{cases} E\varepsilon \mid 0 \le \varepsilon \le \varepsilon_1, \\ \alpha \sigma_t + \frac{(1-\alpha)E}{1-\xi} (\varepsilon - \xi \varepsilon_1) \mid \varepsilon_1 \le \varepsilon \le \xi \varepsilon_1, \xi > 1, \\ \alpha \sigma_t + \beta E (\varepsilon - \xi \varepsilon_1) \mid \varepsilon > \xi \varepsilon_1, \\ \frac{E}{E_s} \varepsilon_s \sigma_c \\ \frac{E}{1 + A\varepsilon_s + B\varepsilon_s^2 + C\varepsilon_s^3} \mid \varepsilon_{ul} \le \varepsilon < 0 \end{cases}$$

 σ_c , σ_t – предел прочности бетона на сжатие и растяжение, ε_c , ε_1 – соответствующие им деформации.

U – точка, соответствующая
 предельным деформациям
 бетона на сжатие.

Теория пластического течения Друкера-Прагера. Конститутивная модель для бетона

Теория пластического течения. Конститутивная модель для бетона

Поверхность прочности Гениева.

Модели материала

Арматура

- Учитывается работа арматуры не только на растяжение-сжатие, но и на поперечный сдвиг.
- Для оболочечных элементов производится размазывание в плоскости арматурного слоя, однако сохраняется дискретность по толщине.
- Для стержневого элемента продольная арматура учитывается дискретно.
- Деформационная теория пластичности, сформулированная в терминах остаточных деформаций (СМ1), теория пластического течения фон Мизеса (СМ2, СМ3).

Арматура

Деформационная теория пластичности Теория пластического течения

Особенности демпфирования колебаний для упруго-пластических моделей.

Модель диссипативная – с ростом меры пластических деформаций происходит рассеяние механической энергии, что само по себе порождает затухание колебаний при отсутствии вязкого или внутреннего трения ($\mathbf{C} = 0$):

 $\mathbf{M}\ddot{\mathbf{u}} + N(\mathbf{u}) + \Gamma \mathbf{u} = \mathbf{f}_{ext}(t) + \Gamma \overline{\mathbf{u}},$

Особенности демпфирования колебаний для упруго-пластических моделей.

Перемещение, м

Диаграмма σ – ε

Особенности демпфирования колебаний для упруго-пластических моделей.

Алгоритм решения динамической задачи.

- 1. Сначала решается нелинейная задача статики прикладывается статическая нагрузка. Используется метод Ньютона-Рафсона.
- 2. Затем решается задача Коши. Начальные перемещения принимаются равными перемещениям от статической нагрузки. Начальные скорости равны нулю.

$$\begin{cases} \mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + N(\mathbf{u}) + \Gamma \mathbf{u} = \mathbf{f}_{ext}(t) + \Gamma \overline{\mathbf{u}}(t) \\ \mathbf{u}(0) = \mathbf{u}_0, \quad \dot{\mathbf{u}}(0) = 0. \end{cases}$$

С. Ю. Фиалко. Применение метода конечных элементов к анализу прочности и несущей способности тонкостенных железобетонных конструкций с учетом физической нелинейности. – М.: Издательство СКАД СОФТ, Издательский дом АСВ, 2018. – 192 с.

Алгоритм решения задачи динамики.

Рассматривается уравнение динамического равновесия на временном шаге *k* + 1. Перемещения, скорости и ускорения на предыдущем шаге *k* известны.

$$\mathbf{Ma}_{k+1} + \mathbf{Cv}_{k+1} + N(\mathbf{u}_{k+1}) + \Gamma \mathbf{u}_{k+1} = \mathbf{f}_{k+1}^{ext} + \Gamma \overline{\mathbf{u}}_{k+1}$$
(8)

Предиктор:

$$\begin{cases} \widetilde{\mathbf{u}}_{k+1}^{0} = \mathbf{u}_{k} + \Delta t \cdot \mathbf{v}_{k} + \frac{\Delta t^{2}}{4} \cdot \mathbf{a}_{k} ,\\ \widetilde{\mathbf{v}}_{k+1}^{0} = \mathbf{v}_{k} + \frac{\Delta t}{2} \cdot \mathbf{a}_{k} ,\\ \widetilde{\mathbf{a}}_{k+1}^{0} = 0 . \end{cases}$$
(9)

Корректор: необходимо так подобрать Δa , Δv , Δu , чтобы обеспечить условие равновесия на шаге k + 1.

$$\mathbf{f}_{k+1}^{ext} + \Gamma \overline{\mathbf{u}}_{k+1} - \mathbf{M} \big(\mathbf{a}_{k+1} + \Delta \mathbf{a} \big) - \mathbf{C} \big(\mathbf{v}_{k+1} + \Delta \mathbf{v} \big) - N \big(\mathbf{u}_{k+1} + \Delta \mathbf{u} \big) - \Gamma \big(\mathbf{u}_{k+1} + \Delta \mathbf{u} \big) = 0$$
(10)

Линеаризация (метод Ньютона): считая, что $\Delta \mathbf{u}$ – малая величина по сравнению с **u**, разложим нелинейный оператор $N(\mathbf{u})$ в ряд Тейлора с удержанием только линейного члена разложения:

$$N(\mathbf{u}_{k+1} + \Delta \mathbf{u}) \approx N(\mathbf{u}_{k+1}) + \frac{\partial N}{\partial \mathbf{u}} \Delta \mathbf{u}, \quad \mathbf{K}_t(\mathbf{u}) = \frac{\partial N}{\partial \mathbf{u}}|_{\mathbf{u}}.$$
 (11)

Алгоритм:

$$\mathbf{u}_{k+1}^0 = \widetilde{\mathbf{u}}_{k+1}^0, \quad \mathbf{v}_{k+1}^0 = \widetilde{\mathbf{v}}_{k+1}^0, \quad \mathbf{a}_{k+1}^0 = 0, \quad i = 0.$$

while(err > tol)

$$\mathbf{r} = \mathbf{f}_{k+1}^{ext} + \Gamma \overline{\mathbf{u}}_{k+1} - \mathbf{M} \mathbf{a}_{k+1}^{i} - \mathbf{C} \mathbf{v}_{\mathbf{v}_{k+1}}^{i} - N(\mathbf{u}_{k+1}^{i}) - \Gamma(\mathbf{u}_{k+1}^{i})$$

$$err = \|\mathbf{r}\|_{2} / \max\left\{ \|\mathbf{f}_{k+1}^{ext}\|_{2}, \|\Gamma \overline{\mathbf{u}}_{k+1}\|_{2}, \|\mathbf{M} \mathbf{a}_{k+1}^{i}\|_{2} \right\}$$

$$if(err \le tol) \quad break;$$

$$\mathbf{K}_{dyn}(\mathbf{u}_{k+1}^{i})\Delta \mathbf{u} = \mathbf{r}, \quad \mathbf{K}_{dyn}(\mathbf{u}_{k+1}^{i}) = \frac{1}{\beta\Delta t^{2}}\mathbf{M} + \frac{\gamma}{\beta\Delta t}\mathbf{C} + \mathbf{K}_{t}(\mathbf{u}_{k+1}^{i})$$

$$\mathbf{u}_{k+1}^{i+1} = \mathbf{u}_{k+1}^{i} + \Delta \mathbf{u} \qquad 3 \text{десь} \quad \gamma = 1/2, \quad \beta = 1/4.$$

$$\mathbf{v}_{k+1}^{i+1} = \mathbf{v}_{k+1}^{i} + \frac{\gamma}{\beta\Delta t}\Delta \mathbf{u}$$

$$\mathbf{a}_{k+1}^{i+1} = \mathbf{a}_{k+1}^{i} + \frac{1}{\beta\Delta t^{2}}\Delta \mathbf{u}$$

$$i = i + 1$$
end while loop

Статическая и динамическая нагрузки

Сейсмическая нагрузка:

- Землетрясение 8 баллов,
- Горизонтальное воздействие, •
- Синхронное возмущение опор,

демпфирование материала – $\gamma_e =$

0.016 ($\xi = 0.1$ от критического).

• Рэлеевское демпфирование –

 $\alpha = 0.438, \beta = 0.005;$

Акселерограмма, м/с² (приведена к землетрясению 8 баллов)

Сейсмограмма, м

Сглаживание вынужденных перемещений

Причина:

Использование линейной интерполяции заданных перемещений $\overline{\mathbf{u}}(t)$. При этом скорость $\dot{\overline{\mathbf{u}}}(t)$ является кусочнопостоянной функцией на отрезке

 $t\in [t_i,t_{i+1}],$

а ускорения $\ddot{\mathbf{u}}(t)$ всюду на отрезке равны нулю, а в узлах интерполяции *i*, *i*+1 представлены дельтафункциями Дирака.

Fialko S., Karpilovskyi V. Time history analysis formulation in SCAD FEA software. Journal of Measurements in Engineering, Vol. 6, Issue 4, 2018, p. 173-180. <u>https://doi.org/10.21595/jme.2018.20408</u>

Критические события:

- Приведенная деформация арматуры растянутой зоны превысила σ_y/E_s.
 (Арматура растянутой зоны течет)
- Приведенная деформация арматуры сжатой зоны превысила σ_y/E_s . (Арматура сжатой зоны течет)
- Приведенная деформация бетона сжатой зоны превысила 0.0035.
 (Бетон сжатой зоны прошел предельную точку диаграммы σ ε).

Конечный элемент считается поврежденным, если произошло хотя бы одно из перечисленных выше событий.

Конечный элемент считается разрушенным, если:

- Арматура растянутой зоны течет.
- Арматура сжатой зоны течет и бетон сжатой зоны прошел предельную точку диаграммы σ ε.

По окончании расчета выдается таблица:

STATUS OF FINITE ELEMENTS

ele	Rebar of tensile zone yields	Rebar of compressed zone yields	Concrete of compressed zone passed the limit point
1		19023	22465
101		12081	22086
201		11700	21622
301		2098	2316
405		22364	
406	21975		

В таблице приведены номера шагов интегрирования по времени, когда произошло данное событие.

Сравнение моделей демпфирования. Поперечная сила в элементе 101, МН, демпфирование $\xi = 0.1$ от критического, деформационная теория

Поперечная сила в элементе 101, MH, демпфирование ξ = 0.1 от критического, деформационная теория пластичности.

Поврежденные конечные элементы. Деформационная теория пластичности.

Демпфирование материала

СМ1. Демпфирование Рэлея. Остаточные перемещения. Прогиб узла 165, м.

СМ1. Демпфирование материала. Остаточные перемещения. Прогиб узла 165, м.

Линейный анализ vs нелинейный. Поперечная сила в элементе 101, МН, Рэлеевское демпфирование (ξ = 0.1 от критического), деформационная теория, теория пластического течения (модель Друкера-Прагера для ригелей и модель Гениева – для колонн).

Поперечная сила в элементе 101, МН, Рэлеевское демпфирование (ξ = 0.1 от критического), деформационная теория vs теория пластического течения (модель Друкера-Прагера для ригелей и модель Гениева – для колонн).

Поврежденные конечные элементы. Деформационная теория пластичности vs теория пластического течения. Рэлеевское демпфирование (ξ = 0.1 от критического).

Теория пластического течения

Деформационная теория пластичности. Демпфирование материала ($\gamma_e = 0.016$).

Элемент 101. Диаграмма $\sigma_e - \varepsilon_e$. Бетон. Наиболее сжатое волокно.

Элемент 101. Диаграмма $\sigma_e / \sigma_y - E_s \varepsilon_e / \sigma_y$. Арматура.

MPa

Теория пластического течения. Демпфирование Рэлея. (ξ = 0.1 от критического).

Элемент 101. Колонна. Бетон. Диаграмма $\sigma_e - \varepsilon_e$. Модель Гениева. Элемент 101. Диаграмма $\sigma_e / \sigma_y - E_s \varepsilon_e / \sigma_y$. Арматура.

Заключение.

Значительное влияние на отклик системы при сейсмическом воздействии оказывает:

- Учет физической нелинейности.
- Выбор модели материала (упруго-пластическое поведение, тип теории пластичности, вид диаграммы σ ε, вид поверхности текучести, учет изотропного и трансляционного разупрочнения).
- Модель диссипации.
- Уровень пластических деформаций при статическом нагружении.

К сожалению, общих рецептов, какие именно модели принимать в каждом конкретном случае, пока не существует.

Благодарю за внимание!